Draw a pentagon or star using only a straightedge and compass
Ptolemy’s (extremely simple) method:
1. Draw a circle on a horizontal line.
2. Bisect the radius \( \linesegment{OR} \) at A.
3. Add a vertical segment \( \linesegment{OB} \) through the center.
4. Draw the arc through the top of the circle B centered on A.
5. The segment \( \linesegment{BC} \) is the length of a side of an inscribed pentagon; use it to mark the vertices on the circle.
( Side note: \( \linesegment{CO} \) : \( \linesegment{OR} \) = \( \linesegment{OR} \) : \( \linesegment{CR} \) = the golden ratio. )
Proof that the method is correct:
\( \linesegment{AB} = \sqrt{ 1^2 + \left(\frac{1}{2} \right)^2 } = \frac{\sqrt{5}}{2} \)
\( \linesegment{BC} = \sqrt{ 1^2 + \left(\linesegment{AB} - \frac{1}{2} \right)^2 } = \sqrt{ \smash{ \frac{ {5} - \sqrt{5} }{2} } \vphantom{ \left(\frac{1}{2} \right)^2} } \)
. . . which is the correct value for the side of a pentagon drawn on a unit circle.
The golden ratio:
\( \linesegment{OC} = \linesegment{AB} - \frac{1}{2} = \frac{\sqrt{5} - 1}{2} = \varphi \)
\( \linesegment{CR} = \linesegment{OC} + 1 = \frac{\sqrt{5} + 1}{2} = \Phi \)
Ptolemy’s Construction for the Side of a Pentagon as a Formula
http://httprover2.blogspot.com/2011/03/ptolemys-construction-for-side-of.html
Constructions of a Regular Pentagon Inscribed in a Given Circle
https://www.parabola.unsw.edu.au/files/articles/2010-2019/volume-53-2017/issue-3/vol53_no3_1.pdf
Yes, “pagans” like stars in circles. Because everyone likes stars in circles.
Roundel of the United States Air Force:
Pennsylvania Dutch barn star:
Sand dollar:
The pentagram of Venus:
(the apparent path of the planet Venus as observed from Earth;
it’s an epitrochoid with parameters R=5, r=8, d=9.5.)
The “Betsy Ross” flag:
Please visit russellcottrell.com | blog